Statistical significance of communities in networks.
نویسندگان
چکیده
Nodes in real-world networks are usually organized in local modules. These groups, called communities, are intuitively defined as subgraphs with a larger density of internal connections than of external links. In this work, we define a measure aimed at quantifying the statistical significance of single communities. Extreme and order statistics are used to predict the statistics associated with individual clusters in random graphs. These distributions allows us to define one community significance as the probability that a generic clustering algorithm finds such a group in a random graph. The method is successfully applied in the case of real-world networks for the evaluation of the significance of their communities.
منابع مشابه
Using Virtual Social Networks and Social Tolerance among Youths in Tehran
Difference and diversity are phenomena existing from the very first days human communities have been formed. Under such condition, what provides for necessity of coexistence between different individuals and groups to become possible is tolerance. On the other hand, wide range development in terms of communication and providing information are going on in today’s world. This evolution called by...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملSignificant Communities in Large Sparse Networks
Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical significance of the network communities, or the robustness of the detected structure, one approach is to perturb the network structure by removing l...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2010